Norfolk Boreas Offshore Wind Farm Appendix 15.3 Consequences of collision and allision **Environmental Statement** Volume 3 Applicant: Norfolk Boreas Limited Document Reference: 6.3.15.3 Pursuant to APFP Regulation: 5(2)(a) Date: June 2019 Revision: Version 1 Author: Anatec Limited Photo: Ormonde Offshore Wind Farm This page is intentionally blank. # Appendix 15.3 Norfolk Boreas Consequences Prepared by Anatec Limited Presented to Norfolk Boreas Ltd Date 20/02/2019 sion Number 01 **Revision Number** 01 **Document Reference** A4053-NBL-NRA-3 #### **Aberdeen Office** 10 Exchange Street, Aberdeen, AB11 6PH, UK Tel 01224 253700 Fax 0709 2367306 Email aberdeen@anatec.com **Address** #### **Cambridge Office** Braemoor, No. 4 The Warren, Witchford Ely, Cambs, CB6 2HN, UK 01353 661200 0709 2367306 cambs@anatec.com Client Norfolk Boreas Ltd Title Norfolk Boreas NRA - Appendix 15.3: Consequences This study has been carried out by Anatec Ltd on behalf of Norfolk Boreas Ltd. The assessment represents Anatec's best judgment based on the information available at the time of preparation. Any use which a third party makes of this report is the responsibility of such third party. Anatec accepts no responsibility for damages suffered as a result of decisions made or actions taken in reliance on information contained in this report. The content of this document should not be edited without approval from Anatec. All figures within this report are copyright Anatec unless otherwise stated. No reproduction of these images is allowed without written consent from Anatec. | Revision Number | Date | Summary of Change | | |-----------------|------------|--------------------------------|--| | 00 | 31/07/2018 | Initial Draft | | | 01 | 20/02/2019 | Environmental Statement Update | | | | | | | Project A4053 Client Norfolk Boreas Ltd Title Norfolk Boreas NRA - Appendix 15.3: Consequences # **Table of Contents** | 1 | Intro | duction | . 1 | |------|------------------|--|-----| | 2 | Risk | Evaluation Criteria | . 1 | | | 2.1 | Risk to People | | | | 2.1.1
2.1.2 | Individual Risk (per Year) | | | | 2.1.2 | Societal Risk | | | 3 | | B Incident Analysis | | | | 3.1 | All Incidents | | | | 3.2 | Collision Incidents | | | | 3.3 | Contact Incidents | 11 | | 4 | Fatal | ity Risk | 13 | | | 4.1 | Fatality Probability | | | | 4.2 | Fatality Risk due to the Project | | | | 4.3 | Significance of Increase in Fatality Risk | | | 5 | Pollu | tion Risk | 19 | | | 5.1 | Historical Analysis | | | | 5.2
5.3 | Pollution Risk due to the Project | | | 6 | | lusions | | | | | | | | 7 | кете | rences | 22 | | | | Table of Figures | | | Figu | re 2.1 | Individual Risk Levels and Acceptance Criteria per Vessel Type | 2 | | _ | re 2.2 | Individual Risk per Year for various UK Industries | | | _ | re 3.1
re 3.2 | Incident Locations by Type within UK Waters (MAIB 1994-2014)Incidents per Year within UK Waters (MAIB 1994-2014) | | | _ | re 3.3 | Incidents by Incident Type within UK Waters (MAIB 1994-2014) | | | _ | re 3.4 | Incidents by Vessel Type within UK Waters (MAIB 1994-2014) | | | Figu | re 3.5 | Fatalities by Vessel Type for Incidents within UK Waters (MAIB 1994-2014) | 8 | | _ | re 3.6 | Collision Incident Locations within UK Waters (MAIB 1994-2014) | | | _ | re 3.7 | Collision Incidents per Year within UK Waters (MAIB 1994-2014) | | | _ | re 3.8
re 3.9 | Collision Incidents by Vessel Type within UK Waters (MAIB 1994-2014) | | | _ | re 3.10 | · | | | _ | re 3.11 | · | | | | | | | Project A4053 Client Norfolk Boreas Ltd Title Norfolk Boreas NRA - Appendix 15.3: Consequences | Title Norton | R Boreas NKA - Appendix 15.3: Consequences | www.anatec.com | |--------------|--|----------------| | Figure 4.1 | Change in Annual Collision and Allision Frequency by Vessel Type | 17 | | Figure 4.2 | Estimated change in Annual PLL by Vessel Type | 18 | | Figure 4.3 | Estimated change in Individual Risk by Vessel Type | 19 | | Figure 5.1 | Probability of an Oil Spill Resulting from an Accident | 20 | | Figure 5.2 | Estimated change in Pollution by Vessel Type | 21 | | | Table of Tables | | | Table 2.1 | Individual Risk ALARP Criteria | 2 | | Table 3.1 | Fatal Collision Incidents (MAIB 1994-2014) | 10 | | Table 4.1 | Fatality Probability per Collision per Vessel Category (1994-2014) | 15 | | Table 4.2 | Summary of Annual Collision Frequency Results | 15 | | Table 4.3 | Vessel Types, Incidents and Average Number of POB | 16 | # **Abbreviations Table** | Abbreviation | Definition | |--------------|--------------------------------------| | ALARP | As low as reasonably practicable | | DfT | Department for Transport | | IMO | International Maritime Organization | | MAIB | Marine Accident Investigation Branch | | MEHRA | Marine Environmental High Risk Area | | MSC | Maritime Safety Committee | | NRA | Navigation Risk Assessment | | PLL | Potential Loss of Life | | РОВ | Persons On Board | | RoRo | Roll On Roll Off | | UK | United Kingdom | Date 20/02/2019 Document Reference A4053-NBL-NRA-3 #### 1 Introduction - 1. This Appendix to Chapter 15 Shipping and Navigation presents an assessment of the consequences of collision and allision incidents, in terms of people and the environment, due to the impact of the structures installed within the Norfolk Boreas site. - 2. The significance of the impact of the project is also assessed based on risk evaluation criteria and comparison with historical accident data in United Kingdom (UK) waters¹. - 3. The assessment within this appendix is primarily based on collision and allision modelling undertaken within the Navigation Risk Assessment (NRA) (Appendix 15.1 to Chapter 15 Shipping and Navigation). As detailed within the NRA, this modelling is based on marine traffic surveys undertaken in summer 2017 and winter 2018, with an additional summer 2018 survey used for validation purposes. ### 2 Risk Evaluation Criteria ## 2.1 Risk to People - 4. With regard to the assessment of risk to people two measures are considered, namely: - Individual risk; and - Societal risk. #### 2.1.1 Individual Risk (per Year) - 5. This measure considers whether the risk from an accident to a particular individual changes significantly due to the presence of the structures within the Norfolk Boreas site. Individual risk considers not only the frequency of the accident and the consequence (likelihood of death), but also the individual's fractional exposure to that risk, i.e. the probability of the individual being in the given location at the time of the accident. - 6. The purpose of estimating the individual risk is to ensure that individuals who may be affected by the presence of the structures within the Norfolk Boreas site are not exposed to excessive risks. This is achieved by considering the significance of the change in individual risk resulting from the presence of the project infrastructure relative to the background individual risk levels. - 7. Annual individual risk levels to crew (the annual fatality risk of an average crew member) for different vessel types are presented in Figure 2.1 (International Date 20/02/2019 Document Reference A4053-NBL-NRA-3 ¹ In this technical note, UK waters is defined as the UK Exclusive Economic Zone (EEZ) and UK territorial waters means within the 12nm limit. Maritime Organization (IMO), 2001). The figure also highlights the upper and lower bounds for risk acceptance criteria as suggested in IMO Maritime Safety Committee (MSC) 72/16. The annual individual risk level to crew falls within the As Low As Reasonably Practicable (ALARP) region for each of the vessel types presented. Figure 2.1 Individual Risk Levels and Acceptance Criteria per Vessel Type 8. Typical bounds defining the ALARP regions for decision making within shipping are presented in Table 2.1. Table 2.1 Individual Risk ALARP Criteria | Individual | Lower Bound for ALARP | Upper Bound for ALARP | | |-------------------|-----------------------|--|--| | To crew member | 10 ⁻⁶ | 10-3 | | | To passenger | 10 ⁻⁶ | 10-4 | | | Third party | 10 ⁻⁶ | 10-4 | | | New vessel target | 10 ⁻⁶ | Above values reduced by one order of magnitude | | 9. On a UK basis, the MCA website presents individual risks for various UK industries based on Health and Safety Executive data for 1987 to 1991. The risks for different industries are presented in Figure 2.2. 10. The individual risk for sea transport of 2.9×10^{-4} per year is consistent with the worldwide data presented in Figure 2.1, whilst the individual risk for sea fishing of 1.2×10^{-3} per year is the highest across all of the industries listed. Figure 2.2 Individual Risk per Year for various UK Industries #### 2.1.2 Societal Risk - 11. Societal risk is used to estimate risks of accidents affecting many persons, e.g. catastrophes, and acknowledging risk averse or neutral attitudes. Societal risk includes the risk to every person, even if a person is only exposed on one brief occasion to that risk. For assessing the risk to a large number of affected people, societal risk is desirable because individual risk is insufficient in evaluating risks imposed on large numbers of people. - 12. Within this assessment societal risk (navigational based) can be assessed for the project, giving account to the change in risk associated with each accident scenario caused by the introduction of the wind farm structures. Societal risk may be expressed as: - Annual fatality rate where frequency and fatality are combined into a convenient one-dimensional measure of societal risk. This is also known as Potential Loss of Life (PLL); and - FN-diagrams showing explicitly the relationship between the cumulative frequency of an accident and the number of fatalities in a multi-dimensional diagram. - 13. When assessing societal risk this study focuses on PLL, which takes into account the number of people likely to be involved in an incident (which is higher for certain vessel types), and assesses the significance of the change in risk compared to background risk levels for the UK. Date 20/02/2019 Page 3 Norfolk Boreas NRA - Appendix 15.3: Consequences #### 2.2 Risk to the Environment - 14. For risk to the environment the key criteria considered in terms of the effect of the project is the potential amount of oil spilled from the vessel involved in an incident. - 15. It is recognised there will be other potential pollution, e.g. hazardous containerised cargoes; however oil is considered the most likely pollutant and the extent of predicted oil spills will provide an indication of the significance of pollution risk due to the project compared to background pollution risk levels for the UK. #### 3 **MAIB Incident Analysis** #### 3.1 **All Incidents** - 16. All UK-flagged commercial vessels are required to report accidents to the Marine Accident Investigation Branch (MAIB). Non-UK flagged vessels do not have to report unless they are in a UK port or are within 12 nm territorial waters and carrying passengers to a UK port. There are no requirements for non-commercial recreational craft to report accidents to the MAIB; however a significant proportion of these incidents are reported to and investigated by the MAIB. - 17. The MCA, harbour authorities and inland waterway authorities also have a duty to report accidents to MAIB. Therefore, whilst there may be a degree of underreporting of accidents with minor consequences, those resulting in more serious consequences, such as fatalities, are likely to be reported. - 18. Only incidents occurring in UK waters have been considered within this assessment for which the MAIB data is most comprehensive. It is also noted that incidents occurring in ports/harbours and rivers/canals have been excluded since the causes and consequences may differ from an accident occurring offshore, which is the location of most relevance to the project. - 19. Taking into account these criteria, a total of 13,374 accidents, injuries and hazardous incidents were reported to the MAIB between 1994 and 2014 involving 15,212 vessels (some incidents such as collisions involved more than one vessel). - 20. The locations² of incidents reported in the vicinity of the UK are presented in Figure 3.1, colour-coded by type. It can be seen that most incidents occurred in coastal waters. The distribution of incidents by year is then presented in Figure 3.2. 20/02/2019 Page ² MAIB aim for 97% accuracy in reporting the locations of incidents. Client Norfolk Boreas Ltd Title Norfolk Boreas NRA - Appendix 15.3: Consequences Figure 3.1 Incident Locations by Type within UK Waters (MAIB 1994-2014) Figure 3.2 Incidents per Year within UK Waters (MAIB 1994-2014) 21. The average number of incidents per year was 637. There has generally been a fluctuating trend in incidents over the 21 year period. The distribution of incidents by incident type is presented in Figure 3.3. Figure 3.3 Incidents by Incident Type within UK Waters (MAIB 1994-2014) - The most common incident types were "Machinery Failure" (40%), "Accident to 22. Person"³ (17%) and "Hazardous Incident" (15%). "Collisions" and "Contacts" represented 3% and 2% of the total incidents, respectively. - 23. The distribution of incidents by vessel type is presented in Figure 3.4. 6 ³ Where the incident is an accident to a vessel, e.g., collision or machinery failure, it would be reported under the vessel accident category. Client Norfolk Boreas Ltd Title Norfolk Boreas NRA - Appendix 15.3: Consequences 7 Figure 3.4 Incidents by Vessel Type within UK Waters (MAIB 1994-2014) - 24. The most common vessel types involved in incidents were fishing vessels (48%), other commercial vessels (17%) (which include offshore industry vessels, tugs, workboats and pilot vessels) and dry cargo vessels (11%). - 25. The total number of fatalities reported in the MAIB incidents from 1994 to 2014 was 428, giving an average of 20 fatalities per year. - 26. The distribution of fatalities in UK waters by vessel type and person category (namely crew, passenger and other) is presented in Figure 3.5. Project A4053 Client Norfolk Boreas Ltd Title Norfolk Boreas NRA - Appendix 15.3: Consequences Figure 3.5 Fatalities by Vessel Type for Incidents within UK Waters (MAIB 1994-2014) 27. It can be seen that the majority of fatalities occurred to crew members of pleasure craft and fishing vessels. #### 3.2 Collision Incidents - 28. MAIB define a collision incident as "vessel hits another vessel that is floating freely or is anchored (as opposed to being tied up alongside)." - 29. A total of 447 collision incidents were reported to MAIB in UK waters (excluding ports, etc.) between 1 January 1994 and 31 December 2014 involving 889 vessels (in a small number of cases the other vessel involved was not logged). - 30. The locations of collision incidents reported in the vicinity of the UK are presented in Figure 3.6. The number of vessels involved in a collision incident by year is then presented in Figure 3.7. Client Norfolk Boreas Ltd Title Norfolk Boreas NRA - Appendix 15.3: Consequences 9 Figure 3.6 Collision Incident Locations within UK Waters (MAIB 1994-2014) Figure 3.7 Collision Incidents per Year within UK Waters (MAIB 1994-2014) Date 20/02/2019 Page Document Reference A4053-NBL-NRA-3 - 31. The average number of vessels involved in a collision per year was 42. There has been an overall increasing trend in collisions over the study period, which may be due to better reporting of less serious incidents in recent years. - 32. The distribution of collision incidents by vessel type is presented in Figure 3.8. Figure 3.8 Collision Incidents by Vessel Type within UK Waters (MAIB 1994-2014) - 33. The most common vessel types involved in collision incidents were other commercial vessels (31%), fishing vessels (24%), non-commercial pleasure craft (24%) and dry cargo vessels (10%). - 34. The total number of fatalities reported in MAIB collision incidents within UK waters between 1994 and 2014 when excluding incidents occurring in ports and harbours was four. Details of each of these fatal incidents reported by the MAIB are presented in Table 3.1. Table 3.1 Fatal Collision Incidents (MAIB 1994-2014) | Date | Description | Fatalities | |-----------------|---|------------| | October
2001 | A dry cargo vessel and a chemical tanker collided in the south-west traffic lane of the Dover Strait TSS to the south-east of Hastings. Although the weather and visibility were good, both watchkeepers were too late to take effective avoiding action. The collision resulted in the sinking of the dry cargo vessel from which five out of six crew members were rescued. | 1 | Date 20/02/2019 Document Reference A4053-NBL-NRA-3 Project A4053 Client Norfolk Boreas Ltd Title Norfolk Boreas NRA - Appendix 15.3: Consequences | Date | Description | Fatalities | |--------------|--|------------| | August 2002 | Two speedboats collided resulting in one fatality and one injury. The visibility was good and the weather was calm. Police were called to the scene and both drivers were arrested. | 1 | | July
2005 | A collision between two powerboats near Castle Point, St. Mawes resulted in the death of one of the helmsmen. The incident occurred during the night with both vessels unlit whilst transiting through the area. Both helmsmen had consumed alcohol prior to the incident which is suspected to have caused reduced peripheral vision, deterioration of judgment and slower reaction times from both helmsmen, resulting in the collision. | 1 | | August 2010 | An Italian registered RoRo passenger ferry collided with a UK registered fishing vessel around four miles off St Abb's Head. As a result of the collision, the fishing vessel sank. The skipper was recovered from the sea but, despite an extensive search by the rescue services and a large number of local fishing vessels, the remaining crew member was lost. | 1 | #### 3.3 Contact Incidents - 35. MAIB define a contact incident as when "a vessel hits an object that is immobile and is not subject to the collision regulations e.g. buoy, post, dock (too hard), etc. Also, another ship if it is tied up alongside. Also floating logs, containers etc." - 36. A total of 262 contact incidents were reported to MAIB in UK waters (excluding ports, etc.) between 1994 and 2014 involving 294 vessels. (A small number of contact incidents involved a moving vessel contacting a stationary vessel). - 37. The locations of contact incidents reported in the vicinity of the UK are presented in Figure 3.9. Following this, the distribution of contact incidents by year is presented in Figure 3.10. Client Norfolk Boreas Ltd Title Norfolk Boreas NRA - Appendix 15.3: Consequences 12 Page Figure 3.9 Contact Incident Locations within UK waters (MAIB 1994-2014) Figure 3.10 Contact Incidents per Year within UK Waters (MAIB 1994-2014) Date 20/02/2019 Document Reference A4053-NBL-NRA-3 38. The average number of contact incidents per year was 13. As with collision incidents there has been an increasing trend over the 21 year period, which may be due to improved reporting of less serious incidents in recent years. Figure 3.11 Contact Incidents by Vessel Type within UK Waters (MAIB 1994-2014) - 40. The most common vessel types involved in contact incidents were other commercial vessels (36%), dry cargo vessels and fishing vessels (both 18%). - 41. There were no fatalities reported in any of the MAIB contact incidents within UK waters between 1994 and 2014 when excluding incidents occurring in ports and harbours. # 4 Fatality Risk - 42. This section uses the MAIB incident data along with information on average manning levels per vessel type to estimate the probability of fatality in a marine incident associated with the project. - 43. The project is assessed to have the potential to affect the following incidents: - Vessel to vessel collision; - Powered vessel to structure allision; - Drifting vessel to structure allision; and - Fishing vessel to structure allision. Of these incidents, only vessel to vessel collisions match the MAIB definition of 44. collisions and hence the fatality analysis presented in section 3.2 is considered to be directly applicable to these types of incidents. - 45. The other scenarios of powered vessel to structure allision, drifting vessel to structure allision and fishing vessel to structure allision are technically contacts since they involve a vessel striking an immobile object in the form of a wind turbine or associated platform. From section 3.3 it can be seen that none of the 262 contact incidents reported by MAIB between 1994 and 2014 resulted in fatalities. - 46. However, as the mechanics involved in a vessel contacting a wind turbine may differ in severity from hitting, for example, a buoy, quayside or moored vessel, the MAIB collision fatality risk rate has also been conservatively applied for these incidents. #### 4.1 **Fatality Probability** - 47. Four of the 447 collision incidents reported by the MAIB in UK waters between 1994 and 2014 resulted in one or more fatalities. This gives a 0.89% probability that a collision incident will lead to a fatal accident. - 48. To assess the fatality risk for personnel onboard a vessel, either crew, passenger or other, the number of persons involved in the incidents needs to be estimated. From analysis of the MAIB incident data, the average commercial passenger vessel had approximately 193 people on board (POB) (total of crew and passengers). For commercial cargo / freight vessels there was an average of approximately 14 POB. For fishing vessels the average POB was approximately 3.3 and for pleasure craft the average POB was approximately 6.4. - 49. It is recognised that these numbers can be substantially higher or lower on an individual vessel basis depending upon size, subtype, etc., but applying reasonable averages is considered sufficient for the purposes of this analysis. - 50. Using the average number of persons carried along with the vessel type information involved in collision incidents reported by the MAIB (see Figure 3.8), gives an estimated 12,966 personnel onboard the vessels involved in the collision incidents. - 51. Based on four fatalities, the overall fatality probability in a collision for any individual onboard is approximately 3.1×10⁻⁴ per collision. - 52. It is considered inappropriate to apply this rate uniformly as the statistics indicate that the fatality probability associated with smaller craft is higher. Therefore the fatality probability has been subdivided into three categories of vessel as presented in Table 4.1. Date 20/02/2019 Page 14 A4053-NBL-NRA-3 **Document Reference** Client Norfolk Boreas Ltd Title Norfolk Boreas NRA - Appendix 15.3: Consequences #### **Table 4.1 Fatality Probability per Collision per Vessel Category (1994-2014)** | Vessel Category | Sub Categories | Fatalities | People
Involved | Fatality
Probability | |-----------------|--|------------|--------------------|-------------------------| | Commercial | Dry cargo,
passenger, tanker,
etc. | 1 | 9,718 | 1.0E-04 | | Fishing | Trawler, Potter,
Dredger, etc. | 1 | 708 | 1.4E-03 | | Pleasure Craft | Yacht, small
commercial motor
vessel, etc. | 2 | 2,540 | 7.9E-04 | 53. It can be seen the risk is approximately one order of magnitude higher for people onboard small craft compared to larger commercial vessels. #### 4.2 **Fatality Risk due to the Project** 54. The base case and future case annual collision frequency levels with and without the project are summarised in Table 4.2. Further details of the modelling process are provided in the NRA (Appendix 15.1 to Chapter 15 Shipping and Navigation). **Table 4.2 Summary of Annual Collision Frequency Results** | Collision/Allision | Base Case (Return Period) | | Future Case (Return Period) | | | | |---------------------------------------|---|--|---|---|--|--| | Scenario | Without | With | Change | Without | With | Change | | Vessel to vessel collision | 5.28 x 10 ⁻² (18.9 years) | 5.35 x 10 ⁻²
(18.7 years) | 6.96 x 10 ⁻⁴ (1,400 years) | 6.39 x 10 ⁻² (15.6 years) | 6.48 x 10 ⁻² (15.4 years) | 8.59 x 10 ⁻⁴ (1,200 years) | | Powered vessel to structure allision | | 2.49 x 10 ⁻⁴
(4,000 years) | 2.49 x 10 ⁻⁴
(4,000 years) | | 2.74 x 10 ⁻⁴ (3,600 years) | 2.74 x 10 ⁻⁴ (3,600 years) | | Drifting vessel to structure allision | | 9.14 x 10 ⁻⁵ (10,900 years) | 9.14 x 10 ⁻⁵
(10,900 years) | | 1.00 x 10 ⁻⁴ (10,000 years) | 1.00 x 10 ⁻⁴ (10,000 years) | | Fishing vessel to structure allision | | 2.18 x 10 ⁻¹
(4.6 years) | 2.18 x 10 ⁻¹
(4.6 years) | | 2.40 x 10 ⁻¹
(4.2 years) | 2.40 x 10 ⁻¹
(4.2 years) | | Total | 5.28 x 10 ⁻²
(18.9 years) | 2.72 x 10 ⁻¹
(3.7 years) | 2.19 x 10 ⁻¹
(4.6 years) | 6.39 x 10 ⁻²
(15.6 years) | 3.05 x 10 ⁻¹
(3.3 years) | 2.41 x 10 ⁻¹
(4.1 years) | 55. Table 4.3 presents the estimated average number of POB for the local vessels operating in the area of the project. The POB of passenger vessels has taken consideration of the notable levels of ferry and cruise ship traffic identified within 20/02/2019 Page 15 A4053-NBL-NRA-3 Client Norfolk Boreas Ltd 16 the area. The size of fishing vessels in the area (average of approximately 43m length overall) has also been considered. For further details of this traffic see the marine traffic assessments undertaken within the NRA (Appendix 15.1 to Chapter 15 Shipping and Navigation). Table 4.3 Vessel Types, Incidents and Average Number of POB | Vessel Type | Collision/Allision Incidents | Average Number of POB | |---------------------|--|-----------------------| | Cargo/freight | Vessel to vessel collision; Powered vessel to structure allision; and Drifting vessel to structure allision. | 15 | | Tanker | Vessel to vessel collision; Powered vessel to structure allision; and Drifting vessel to structure allision. | 20 | | Passenger | Vessel to vessel collision; Powered vessel to structure allision; and Drifting vessel to structure allision. | 2,200 | | Fishing vessel | Vessel to vessel collision; andFishing vessel to structure allision | 6 | | Recreational vessel | Vessel to vessel collision. | 4 | From the detailed results of the collision and allision frequency modelling, the distribution of the predicted change in annual collision and allision frequency by vessel type due to the project for the base and future cases are presented in Figure 4.1. Project A4053 Client Norfolk Boreas Ltd Title Norfolk Boreas NRA - Appendix 15.3: Consequences Figure 4.1 Change in Annual Collision and Allision Frequency by Vessel Type - 57. The majority of risk was observed to be associated with fishing vessels. This is primarily due to the assumption within the modelling process that baseline levels and locations of fishing will remain unchanged following the installation of the structures within the Norfolk Boreas site, noting that vessels engaged in active fishing were recorded within the Norfolk Boreas site during both the summer 2017 and winter 2018 surveys. - 58. Combining the annual collision and allision frequency (Table 4.2), the estimated number of POB each vessel type (Table 4.3) and the estimated fatality probability for each vessel category (Table 4.1), the annual increase in PLL due to the impact of the project for the base case is estimated to be 1.87 x 10⁻³ which equates to one additional fatality in 540 years. The annual increase in PLL due to the impact of the project for the future case is estimated to be 2.06 x 10⁻³ which equates to one additional fatality in 490 years. - 59. The estimated incremental increases in PLL due to the project, distributed by vessel type for the base and future cases, are presented in Figure 4.2. Date 20/02/2019 Page 17 Document Reference A4053-NBL-NRA-3 Client Norfolk Boreas Ltd Title Norfolk Boreas NRA - Appendix 15.3: Consequences Figure 4.2 Estimated change in Annual PLL by Vessel Type - 60. As expected based on the distribution of allision and collision risk by vessel type (see Figure 4.1), the majority of the increase in PLL was observed to be associated with risk to fishing vessels. - 61. Converting the PLL to individual risk based on the average number of people exposed by vessel type, the results are presented in Figure 4.3 (this calculation assumes that the risk is shared between 10 vessels of each type, which is considered to be conservative based on the number of different vessels operating in the vicinity of the site). Date 20/02/2019 Document Reference A4053-NBL-NRA-3 Project A4053 Client Norfolk Boreas Ltd Title Norfolk Boreas NRA - Appendix 15.3: Consequences Figure 4.3 Estimated change in Individual Risk by Vessel Type #### 4.3 Significance of Increase in Fatality Risk - 62. The overall increase in PLL estimated due to the project is 1.87 x 10⁻³, which equates to one additional fatality in 540 years. In comparison to MAIB statistics, which indicate an average of 20 fatalities per year in UK territorial waters, this is considered a minor change. - 63. In terms of individual risk to people, the incremental increase for commercial vessels (approximately 2.01×10^{-8} for the base case) is considered negligible when compared to the background risk level for the UK sea transport industry of 2.9×10^{-4} per year. - 64. For fishing vessels, the change in individual risk attributed to the project (approximately 3.10×10^{-5} for the base case) is considered a minor change when compared to the background risk level for the UK sea fishing industry of 1.2×10^{-3} per year. #### 5 Pollution Risk ## **5.1** Historical Analysis - 65. The pollution consequences of a collision in terms of oil spill depend upon the following: - Spill probability (i.e. likelihood of outflow following an accident); and - Spill size (amount of oil). Date 20/02/2019 Page 19 Document Reference A4053-NBL-NRA-3 - 66. Two types of oil spill are considered in this assessment: - Fuel oil spills from bunkers (all vessel types); and - Cargo oil spills (laden tankers). - 67. The research undertaken as part of the Department for Transport's (DfT) Marine Environmental High Risk Areas (MEHRAs) project (DfT, 2001) has been used as it was comprehensive and based on worldwide marine spill data analysis. - 68. From this research, the overall probability of a spill per accident was calculated based on historical accident data for each accident type as presented in Figure 5.1. Figure 5.1 Probability of an Oil Spill Resulting from an Accident - 69. Therefore, it was estimated that 13% of vessel collisions result in a fuel oil spill and 39% of collisions involving a laden tanker result in a cargo oil spill. - 70. In the event of a bunker spill, the potential outflow of oil depends upon the bunker capacity of the vessel. Historical bunker spills from vessels have generally been limited to a size below 50% of the bunker capacity, and in most incidents much lower. For the types and sizes of vessels exposed to the project (based on the marine traffic assessment undertaken as part of the NRA, Appendix 15.1), an average spill size of 100 tonnes of fuel oil is considered to be a conservative assumption. - 71. For cargo spills from laden tankers, the spill size can vary significantly. The International Tanker Owners Pollution Federation report the following spill size distribution for tanker collisions between 1974 and 2004: - 31% of spills below seven tonnes; - 52% of spills between seven and 700 tonnes; and - 17% of spills greater than 700 tonnes. Date 20/02/2019 Page 20 72. For fishing vessel collisions, comprehensive statistical data is not available. Consequently it is conservatively assumed that 50% of all collisions involving fishing vessels will lead to oil spill with the quantity spilled being on average five tonnes. Similarly for recreational vessels, due to a lack of data 50% of collisions are assumed to lead to a spill with an average size of one tonne. ## 5.2 Pollution Risk due to the Project - 73. Applying the above probabilities to the annual collision and allision frequency by vessel type presented in Figure 4.1 and the average spill size per vessel, the amount of oil spilled per year due to the impact of the project is estimated to be 0.65 tonnes per year for the base case vessel routeing and 0.73 tonnes per year for the future case vessel routeing. - 74. The estimated increase in tonnes of oil spilled distributed by vessel type for the base and future cases are presented in Figure 5.2. Figure 5.2 Estimated change in Pollution by Vessel Type 75. Fishing vessels were observed to be the biggest contributor to increased pollution risk. Similarly to the risk to persons assessment, this is due to the assumption within the modelling process that the baseline fishing vessel density will not drop within the Norfolk Boreas site once the project has been constructed. ## 5.3 Significance of Increase in Pollution Risk 76. To assess the significance of the increased pollution risk from marine vessels caused by the project, historical oil spill data for the UK has been used as a benchmark. Date 20/02/2019 Page 21 Project A4053 Client Norfolk Boreas Ltd Title Norfolk Boreas NRA - Appendix 15.3: Consequences - 77. From the MEHRAs research (DfT, 2001), the annual average tonnes of oil spilled in the waters around the British Isles due to marine accidents in the 10 year period from 1989 to 1998 was 16,111. This is based on a total of 146 reported oil pollution incidents of greater than one tonne (smaller spills are excluded as are incidents which occurred within port and harbour areas or as a result of operational errors or equipment failure). Commercial vessel spills accounted for approximately 99% of the total while fishing vessel incidents accounted for less than 1%. - 78. The overall increase in pollution estimated due to the project of 0.004% is considered negligible when compared to the historical average pollution quantities from marine accidents in UK waters. #### 6 Conclusions - 79. This appendix has assessed the fatality and pollution risk associated with Norfolk Boreas, based on results of allision and collision modelling undertaken within the NRA. The quantitative risk assessment indicates that the collision and allision risk associated with fishing vessels is highest, primarily based on the assumption that the project will not impact upon levels and locations of fishing within the Norfolk Boreas site once the project has been constructed. - 80. Overall, the impact of the project on people and the environment is considered minor when compared to the existing background risk levels in UK waters. However, it should be noted that this is the localised impact of a single project and there will be additional maritime risks associated with other offshore wind farm developments in the Southern North Sea and the UK as a whole. Cumulative impacts have been considered within Chapter 15 Shipping and Navigation. - 81. The NRA (Appendix 15.1 to Chapter 15 Shipping and Navigation) provides mitigation and monitoring measures that will be in place as part of the project. #### **7** References DfT (2001). Department for Transport, Identification of Marine Environmental High Risk Areas (MEHRA's) in the UK. 2001. IMO (2001). MSC, 74th Edition, Agenda Item 5 (MSC 74/5/X), Bulk Carrier Safety – FSA, 2001. Date 20/02/2019 Page 22